Wind Field Generator Overview

Wind field creation dialogue in QBlade.

Fig. 132 The wind field creation symbol in the QBlade main tool bar.

The Wind Field Generator in QBlade is essential for defining the atmospheric conditions affecting the turbine during simulations. This section provides an overview of how to generate different types of wind fields, including turbulent, uniform, and hub-height wind fields, each crucial for various simulation scenarios. Below, we describe the options available for each type of wind field and guide you through the settings and parameters necessary to tailor the wind conditions to your specific simulation needs.

Turbulent Wind Field

A turbulent wind field generated in QBlade.

Fig. 133 A turbulent wind field generated in QBlade.

This section describes the process of generating a three-dimensional, fully turbulent wind field. Turbulent wind fields are essential for simulating real-world atmospheric conditions and assessing turbine performance under variable wind speeds and directions.

This can be either generated through the Wind Input Type button of the turbine simulation dialogue, as shown in Fig. 138 or by directly generating this within the turbulent wind module, shown in Fig. 132.

Three different options, to generate a three dimensional, fully turbulent wind field exist in QBlade.

  • TurbSim: Generates the wind field using NREL’s TurbSim binary (see B. J. Jonkman 1).

  • Mann: Generates the wind field using DTU`s Mann generator (see J. Mann 2).

  • Veers: Generates the wind field after the Veers algorithm (see P. S. Veers 3).

TurbSim Wind Fields

When a new TurbSim wind field is created, a range of parameters must be specified as shown by the wind field generator dialogue in Fig. 134. After these have been selected, clicking on the Create button automatically passes the information to the TurbSim program 1. The TurnSim binary is automatically called by QBlade, and after creation the wind field is automatically imported, so that no additional user input is required. The input parameters are described in detail in the following section.

Turb sim wind field dialogue in QBlade.

Fig. 134 Turb sim wind field dialogue in QBlade.

Main Parameters

These parameters dictate the spatial dimensions of the generated turbulent wind grid. A turbulent box is be generated which is then translated through the field of interest at the average velocity (defined below) as is consistent with Taylor’s hypothesis for a turbulent flow 4.

  • Name: The name of the wind field object.

  • Ref. Wind Speed: The reference wind speed of this wind field.

  • Seed: The random seed used to generate the wind field.

  • Time: Determines the length of the generated turbulent box.

  • Timestep: Specifies the discretisation in free stream (\(x\)) direction.

  • Grid Width: Specifies box size in lateral (\(y\)) direction.

  • Grid Height: Specifies box size in vertical (\(z\)) direction.

  • Grid Y Points: Specifies spatial discretisation in \(y\) direction.

  • Grid Z Points: Specifies spatial discretisation in \(z\) direction.

  • Center (Hub) Height: Specifies the vertical position of the box center.

Turbine Class

These determine the turbine class as defined in the IEC 61400 design standard 5.

  • Turbine Class: Specifies the design turbine class.

  • Turbulence Class: Specifies the design turbulence class.

  • I_ref: Specifies the turbulence intensity.

  • V_ref: Specifies the reference velocity.

  • b: The b parameter, used to calculate the turbulence standard deviation in IEC 61400.

Wind Parameters

These parameters specify the parameters and model inputs required for generation of the turbulent velocity field.

  • IEC Standard: Specifies the version of the IEC standard, used to generate the wind field.

  • Wind Type: Specifies the wind field type of the generated wind field.

  • Spectral Model: Specifies the form of the spectral tensor applied to generate the stochastic velocity fluctuations.

  • Wind Profile Type: Specifies the model used to represent the atmospheric shear layer.

  • Reference Height: Specifies the reference height of the aforementioned shear layer model.

  • Shear Exponent: Specifies the shear exponent of the aforementioned shear layer model (if exponential model chosen).

  • Roughness Length: Specifies the reference height of the aforementioned shear layer model (if logarithmic model chosen).

  • Jet Height: Specifies the jet height of the aforementioned shear layer model (if jet model chosen).

  • ETMC value: Specifies the extreme turbulence model \(c\) value (if ETM model chosen).

  • Remove TurbSim Files: If checked, the TurbSim files generated and subsequently read by QBlade, are automatically deleted.

  • Close Console: If checked, the console which is called to generate the TurbSim file is automatically closed upon completion of TurbSim file generation.

Mann Wind Fields

When a new Mann wind field is created, a range of parameters must be specified as shown by the wind field generator dialogue in Fig. 135. After these have been selected, clicking on the Create button automatically passes the information to DTU’s Mann 64bit Turbulence Generator. The Mann binary is automatically called by QBlade, and after creation the wind field is automatically imported, so that no additional user input is required. Please note that the Mann 64bit generator currently is only available for Windows operating systems. The input parameters are described in detail in the following section.

Mann wind field dialogue in QBlade.

Fig. 135 Mann wind field dialogue in QBlade.

Main Parameters

These parameters dictate the spatial dimensions of the generated turbulent wind grid. A turbulent box is be generated which is then translated through the field of interest at the average velocity (defined below) as is consistent with Taylor’s hypothesis for a turbulent flow 4.

  • Name: The name of the wind field object.

  • Ref. Wind Speed: The reference wind speed of this wind field.

  • Seed: The random seed used to generate the wind field.

  • Time: Determines the length of the generated turbulent box.

  • Timestep: Specifies the discretisation in free stream (\(x\)) direction.

  • Grid Width: Specifies box size in lateral (\(y\)) direction.

  • Grid Height: Specifies box size in vertical (\(z\)) direction.

  • Grid Y Points: Specifies spatial discretisation in \(y\) direction (must be power of 2).

  • Grid Z Points: Specifies spatial discretisation in \(z\) direction (must be power of 2).

  • Center (Hub) Height: Specifies the vertical position of the box center.

Turbine Class

These determine the turbine class as defined in the IEC 61400 design standard 5.

  • Turbine Class: Specifies the design turbine class.

  • Turbulence Class: Specifies the design turbulence class.

  • I_ref: Specifies the turbulence intensity.

  • V_ref: Specifies the reference velocity.

  • b: The b parameter, used to calculate the turbulence standard deviation in IEC 61400.

Wind Parameters

These parameters specify the parameters and model inputs required for generation of the turbulent velocity field.

  • IEC Standard: Specifies the version of the IEC standard, used to generate the wind field.

  • Wind Type: Specifies the wind field type of the generated wind field.

  • Spectral Model: Specifies the form of the spectral tensor applied to generate the stochastic velocity fluctuations.

  • Wind Profile Type: Specifies the model used to represent the atmospheric shear layer.

  • Reference Height: Specifies the reference height of the aforementioned shear layer model.

  • Shear Exponent: Specifies the shear exponent of the aforementioned shear layer model (if exponential model chosen).

  • Roughness Length: Specifies the reference height of the aforementioned shear layer model (if logarithmic model chosen).

  • ETMC value: Specifies the extreme turbulence model \(c\) value (if ETM model chosen).

Mann Box Parameters

  • Alpha Epsilon: The Mann model \(\alpha\epsilon^{\frac{2}{3}}\) parameter.

  • L Mann: The Mann length scale parameter.

  • Gamma: The non-dimensional shear distortion parameter.

  • High Freq. Compensation: If checked: applies the high frequency compensation, so that point velocities represent local anemometer measurements.

  • Scale to Turbulence: If checked: scales the Mann box turbulence to the defined IEC turbulence, multiplied by the parameters described below

  • X-Scale Factor: Scales the longitudinal turbulence along the x-axis to the IEC turbulence, mutiplied by this value.

  • Y-Scale Factor: Scales the transversal turbulence along the y-axis to the IEC turbulence, mutiplied by this value.

  • Z-Scale Factor: Scales the transversal turbulence along the z-axis to the IEC turbulence, mutiplied by this value.

Veers Wind Fields

When a new Veers wind field is created, a range of parameters must be specified as shown by the wind field generator dialogue in Fig. 136. After these have been selected, clicking on the Create button automatically generates a wind field using the Veers method build into QBlade (see P. Veers 3). The input parameters are described in detail in the following section.

Veers wind field dialogue in QBlade.

Fig. 136 Veers wind field dialogue in QBlade.

Main Parameters

These parameters dictate the spatial dimensions of the generated turbulent wind grid. A turbulent box is be generated which is then translated through the field of interest at the average velocity (defined below) as is consistent with Taylor’s hypothesis for a turbulent flow 4.

  • Name: The name of the wind field object.

  • Ref. Wind Speed: The reference wind speed of this wind field.

  • Seed: The random seed used to generate the wind field.

  • Time: Determines the length of the generated turbulent box.

  • Timestep: Specifies the discretisation in free stream (\(x\)) direction.

  • Grid Height & Width: Specifies box size in horizontal (\(y\)) and vertical (\(z\)) direction.

  • Grid Y & Z Points: Specifies spatial discretisation in \(y\) and \(z\) direction

  • Center (Hub) Height: Specifies the vertical position of the box center.

Wind Parameters

These parameters specify the parameters and model inputs required for generation of the turbulent velocity field.

  • Turbulence Intensity: The target turbulence intensity.

  • Wind Profile Type: Specifies the model used to represent the atmospheric shear layer.

  • Reference Height: Specifies the reference height of the aforementioned shear layer model.

  • Shear Exponent: Specifies the shear exponent of the aforementioned shear layer model (if exponential model chosen).

  • Roughness Length: Specifies the reference height of the aforementioned shear layer model (if logarithmic model chosen).

Importing Turbulent Wind Fields

Import options in the wind field menu.

Fig. 137 Import options in the wind field menu.

It is also possible to import externally generated three dimensional wind fields into QBlade, see Fig. 137. Wind fields can be imported in three ways:

Binary Wind Field File

A wind field file in binary format (.bts) (see TurbSim Users Guide 1) can be imported by simply reading the .bts file.

Mann Model File

A Mann box can be imported through the Mann (.man) file format, shown below.

If the parameter IMPORTBOX is set to false, QBlade will automatically generate a Mann wind box with the parameters specified in the .man file.

If the parameter IMPORTBOX is set to true, QBlade will search for the (possibly externally generated) files:

  • PREFIX _u.bin

  • PREFIX _v.bin

  • PREFIX _z.bin

An import the velocity components from these binary files directly.

Listing 107 : Exemplary Mann (.man) format file
----------------------------------------QBlade Mann Box Definition File--------------------------------------------
Generated with : QBlade EE v2.0.7.4_beta windows
Archive Format: 310024
Time : 13:53:10
Date : 14.07.2024

----------------------------------------Parameters-----------------------------------------------------------------
Windfield                                PREFIX             - prefix of the .bin and other files generated
false                                    IMPORTBOX          - false: generate new box from parameters; true: try to find and read .bin files with prefix

120.000                                  HEIGHTBOX          - height of the mann box center in [m]
630.000                                  XDIM_BOX           - length of the mann box in [m]
240.000                                  YDIM_BOX           - width of the mann box in [m]
240.000                                  ZDIM_BOX           - height of the mann box in [m]
631                                      NX_BOX             - number of points along length, must be power of 2 [-]
32                                       NY_BOX             - number of points along width, must be power of 2 [-]
32                                       NZ_BOX             - number of points along width, must be power of 2 [-]

120.000                                  REFHEIGHT          - reference height for the BL profile in [m]
0                                        PROFILETYPE        - BL profile type: 0- power law; 1 - logarithmic
0.200                                    PROFILEPARAM       - power law exponent or roughness length

0.0660                                   ALPHA_EPSILON      - Mann alpha-epsilon parameter
29.4000                                  L_MANN             - Mann length scale [m]
3.9000                                   GAMMA              - Mann gamma parameter
12345                                    SEED               - turbulent seed

10.000                                   WINDSPEED          - hub-height average wind speed

1                                        IEC_STANDARD       - IEC standard 61400- (1, 2 or 3)
NTM                                      IEC_WINDTYPE       - IEC wind type (NTM, ETM, EWM1, EWM50 or ADDTURB
16.000                                   IEC_IREF           - IEC I_ref value [-]
10.000                                   IEC_VAVE           - IEC V_ave value [m/s]
50.000                                   IEC_VREF           - IEC V_ref value [m/s]
5.600                                    IEC_B              - IEC b value (or a in 61400-2) [m/s]
2.000                                    IEC_ETMC           - IEC ETM c value [m/s]

true                                     TURB_SCALING       - enable turbulent scaling: 0 - OFF; 1 - ON
true                                     HF_CORRECTION      - enable high frequency correction: 0 - OFF; 1 - ON

1.000                                    X_FACTOR           - scaling factor for x-variance
0.800                                    Y_FACTOR           - scaling factor for y-variance
0.500                                    Z_FACTOR           - scaling factor for z-variance

TurbSim Input File

A TurbSim input file may be directly opened in QBlade. The input file (.inp) will then automatically be communicated to the TurbSim binary and the corresponding wind field is imported.

Listing 108 : Exemplary TurbSim Input (.ipt) file
!TurbSim Input File. Valid for TurbSim from OpenFAST v2.4.0. Generated with QBlade QBlade IH v2.0.7-release_candidate_beta windows on 15.05.2024 at 17:22:58

---------Runtime Options-----------------------------------
False               Echo            - Echo input data to <RootName>.ech (flag)
12345               RandSeed1       - First random seed  (-2147483648 to 2147483647)
RANLUX              RandSeed2       - Second random seed (-2147483648 to 2147483647) for intrinsic pRNG, or an alternative pRNG: "RanLux" or "RNSNLW"
False               WrBHHTP         - Output hub-height turbulence parameters in binary form?  (Generates RootName.bin)
False               WrFHHTP         - Output hub-height turbulence parameters in formatted form?  (Generates RootName.dat)
False               WrADHH          - Output hub-height time-series data in AeroDyn form?  (Generates RootName.hh)
True                WrADFF          - Output full-field time-series data in TurbSim/AeroDyn form? (Generates Rootname.bts)
False               WrBLFF          - Output full-field time-series data in BLADED/AeroDyn form?  (Generates RootName.wnd)
False               WrADTWR         - Output tower time-series data? (Generates RootName.twr)
False               WrFMTFF         - Output full-field time-series data in formatted (readable) form?  (Generates RootName.u, RootName.v, RootName.w)
False               WrACT           - Output coherent turbulence time steps in AeroDyn form? (Generates RootName.cts)
True                Clockwise       - Clockwise rotation looking downwind? (used only for full-field binary files - not necessary for AeroDyn)
0                   ScaleIEC        - Scale IEC turbulence models to exact target standard deviation? [0=no additional scaling; 1=use hub scale uniformly; 2=use individual scales]

--------Turbine/Model Specifications-----------------------
24                  NumGrid_Z       - Vertical grid-point matrix dimension
24                  NumGrid_Y       - Horizontal grid-point matrix dimension
0.1000              TimeStep        - Time step [seconds]
63.0000             AnalysisTime    - Length of analysis time series [seconds] (program will add time if necessary: AnalysisTime = MAX(AnalysisTime, usableTimeLabel+GridWidth/MeanHHWS) )
63.0000             usableTimeLabel      - Usable length of output time series [seconds] (program will add GridWidth/MeanHHWS seconds)
120.0001            HubHt           - Hub height [m] (should be > 0.5*GridHeight)
240.00              GridHeight      - Grid height [m]
240.00              GridWidth       - Grid width [m] (should be >= 2*(RotorRadius+ShaftLength))
0.0                 VFlowAng        - Vertical mean flow (uptilt) angle [degrees]
0.0                 HFlowAng        - Horizontal mean flow (skew) angle [degrees]

--------Meteorological Boundary Conditions-------------------
"IECKAI"            TurbModel       - Turbulence model ("IECKAI"=Kaimal, "IECVKM"=von Karman, "GP_LLJ", "NWTCUP", "SMOOTH", "WF_UPW", "WF_07D", "WF_14D", "TIDAL", or "NONE")
"unused"            UserFile        - Name secondary input file for user-defined spectra or time series inputs
"1-ED3"             IECstandard     - Number of IEC 61400-x standard (x=1,2, or 3 with optional 61400-1 edition number (i.e. "1-Ed2") )
"A"                 IECturbc        - IEC turbulence characteristic ("A", "B", "C" or the turbulence intensity in percent) ("KHTEST" option with NWTCUP model, not used for other models)
"NTM"               IEC_WindType    - IEC turbulence type ("NTM"=normal, "xETM"=extreme turbulence, "xEWM1"=extreme 1-year wind, "xEWM50"=extreme 50-year wind, where x=wind turbine class 1, 2, or 3)
2.00                ETMc            - IEC Extreme Turbulence Model "c" parameter [m/s]
default             ProfileType     - Wind profile type ("JET";"LOG"=logarithmic;"PL"=power law;"H2L"=Log law for TIDAL spectral model;"IEC"=PL on rotor disk, LOG elsewhere; or "default")
"unused"            ProfileFile -     Name of the file that contains user-defined input profiles
120.00              RefHt           - Height of the reference wind speed [m]
10.00               URef            - Mean (total) wind speed at the reference height [m/s] (or "default" for JET wind profile)
default             ZJetMax         - Jet height [m] (used only for JET wind profile, valid 70-490 m)
default             PLExp           - Power law exponent [-] (or "default")
default             Z0              - Surface roughness length [m] (or "default")

--------Non-IEC Meteorological Boundary Conditions------------
default             Latitude        - Site latitude [degrees] (or "default")
0.05                RICH_NO         - Gradient Richardson number
default             UStar           - Friction or shear velocity [m/s] (or "default")
default             ZI              - Mixing layer depth [m] (or "default")
default             PC_UW           - Hub mean u'w' Reynolds stress (or "default")
default             PC_UV           - Hub mean u'v' Reynolds stress (or "default")
default             PC_VW           - Hub mean v'w' Reynolds stress (or "default")

--------Spatial Coherence Parameters----------------------------
default             SCMod1          - u-component coherence model ("GENERAL","IEC","API","NONE", or "default")
default             SCMod2          - v-component coherence model ("GENERAL","IEC","API","NONE", or "default")
default             SCMod3          - w-component coherence model ("GENERAL","IEC","API","NONE", or "default")
default             InCDec1         - u-component coherence parameters [-, m^-1] ("a b" in quotes or "default")
default             InCDec2         - v-component coherence parameters [-, m^-1] ("a b" in quotes or "default")
default             InCDec3         - w-component coherence parameters [-, m^-1] ("a b" in quotes or "default")
default             CohExp          - Coherence exponent for general model [-] (or "default")

--------Coherent Turbulence Scaling Parameters-------------------
"path/to/coh_events/eventdata"  CTEventPath     - Name of the path where event data files are located
"Random"            CTEventFile     - Type of event files ("LES", "DNS", or "RANDOM")
true                Randomize       - Randomize the disturbance scale and locations? (true/false)
 1.0                DistScl         - Disturbance scale (ratio of wave height to rotor disk). (Ignored when Randomize = true.)
 0.5                CTLy            - Fractional location of tower centerline from right (looking downwind) to left side of the dataset. (Ignored when Randomize = true.)
 0.5                CTLz            - Fractional location of hub height from the bottom of the dataset. (Ignored when Randomize = true.)
30.0                CTStartTime     - Minimum start time for coherent structures in RootName.cts [seconds]

==================================================
NOTE: Do not add or remove any lines in this file!
==================================================

Uniform Wind Field

A uniform wind field is specified directly within the Wind Input Type of the turbine simulation dialogue, shown in Fig. 138 (see Simulation Module Overview). The necessary input parameters including velocity, horizontal inflow angle and directional shear are defined here. In the case that the atmospheric boundary layer is to be modelled, this can be selected with the wind shear type radio button. The corresponding shear parameters can then by specified (see Wind).

Uniform wind field creation dialogue in QBlade.

Fig. 138 Specification of a uniform wind field within the turbine simulation dialogue.

Hub Height File

The user has more modelling freedom when a hub-height wind file is used. This type of file can either be created manually or by using the IEC wind tool 6. This allows the specification of the velocity field at the hub height as a function of time. QBlade interpolates the time between the starting time of the file and the point where the predefined wind velocity profile (EOG in this case) should start. If the user specified simulation time exceeds the ending time in the hub-height file, QBlade will create a constant wind field with the parameters from the last entry of the hub-height file until the end of the simulation. An exemplary hubheight input file that described an extreme operating gust (EOG) at 20m/s is shown below:

Listing 109 : Exemplary Hub Height Format file
Time    Wind    Horiz.  Vert.   LinH.   Vert.   LinV.   Gust
        Speed   Dir     Speed   Shear   Shear   Shear   Speed
0.000   20.000  0.000   0.000   0.000   0.200   0.000   0.000
60.000  20.000  0.000   0.000   0.000   0.200   0.000   0.000
60.100  20.000  0.000   0.000   0.000   0.200   0.000   -0.000
60.200  20.000  0.000   0.000   0.000   0.200   0.000   -0.004
60.300  20.000  0.000   0.000   0.000   0.200   0.000   -0.012
60.400  20.000  0.000   0.000   0.000   0.200   0.000   -0.028
60.500  20.000  0.000   0.000   0.000   0.200   0.000   -0.054
60.600  20.000  0.000   0.000   0.000   0.200   0.000   -0.092
60.700  20.000  0.000   0.000   0.000   0.200   0.000   -0.144
60.800  20.000  0.000   0.000   0.000   0.200   0.000   -0.209
60.900  20.000  0.000   0.000   0.000   0.200   0.000   -0.289
61.000  20.000  0.000   0.000   0.000   0.200   0.000   -0.384
61.100  20.000  0.000   0.000   0.000   0.200   0.000   -0.493
61.200  20.000  0.000   0.000   0.000   0.200   0.000   -0.614
61.300  20.000  0.000   0.000   0.000   0.200   0.000   -0.747
61.400  20.000  0.000   0.000   0.000   0.200   0.000   -0.889
61.500  20.000  0.000   0.000   0.000   0.200   0.000   -1.037
61.600  20.000  0.000   0.000   0.000   0.200   0.000   -1.188
61.700  20.000  0.000   0.000   0.000   0.200   0.000   -1.338
61.800  20.000  0.000   0.000   0.000   0.200   0.000   -1.485
61.900  20.000  0.000   0.000   0.000   0.200   0.000   -1.622
62.000  20.000  0.000   0.000   0.000   0.200   0.000   -1.748
62.100  20.000  0.000   0.000   0.000   0.200   0.000   -1.856
62.200  20.000  0.000   0.000   0.000   0.200   0.000   -1.944
62.300  20.000  0.000   0.000   0.000   0.200   0.000   -2.007
62.400  20.000  0.000   0.000   0.000   0.200   0.000   -2.041
62.500  20.000  0.000   0.000   0.000   0.200   0.000   -2.043
62.600  20.000  0.000   0.000   0.000   0.200   0.000   -2.011
62.700  20.000  0.000   0.000   0.000   0.200   0.000   -1.942
62.800  20.000  0.000   0.000   0.000   0.200   0.000   -1.834
62.900  20.000  0.000   0.000   0.000   0.200   0.000   -1.686
63.000  20.000  0.000   0.000   0.000   0.200   0.000   -1.498
63.100  20.000  0.000   0.000   0.000   0.200   0.000   -1.271
63.200  20.000  0.000   0.000   0.000   0.200   0.000   -1.005
63.300  20.000  0.000   0.000   0.000   0.200   0.000   -0.703
63.400  20.000  0.000   0.000   0.000   0.200   0.000   -0.366
63.500  20.000  0.000   0.000   0.000   0.200   0.000   0.000
63.600  20.000  0.000   0.000   0.000   0.200   0.000   0.393
63.700  20.000  0.000   0.000   0.000   0.200   0.000   0.807
63.800  20.000  0.000   0.000   0.000   0.200   0.000   1.237
63.900  20.000  0.000   0.000   0.000   0.200   0.000   1.678
64.000  20.000  0.000   0.000   0.000   0.200   0.000   2.124
64.100  20.000  0.000   0.000   0.000   0.200   0.000   2.568
64.200  20.000  0.000   0.000   0.000   0.200   0.000   3.003
64.300  20.000  0.000   0.000   0.000   0.200   0.000   3.425
64.400  20.000  0.000   0.000   0.000   0.200   0.000   3.825
64.500  20.000  0.000   0.000   0.000   0.200   0.000   4.198
64.600  20.000  0.000   0.000   0.000   0.200   0.000   4.539
64.700  20.000  0.000   0.000   0.000   0.200   0.000   4.841
64.800  20.000  0.000   0.000   0.000   0.200   0.000   5.101
64.900  20.000  0.000   0.000   0.000   0.200   0.000   5.314
65.000  20.000  0.000   0.000   0.000   0.200   0.000   5.477
65.100  20.000  0.000   0.000   0.000   0.200   0.000   5.587
65.200  20.000  0.000   0.000   0.000   0.200   0.000   5.642
65.300  20.000  0.000   0.000   0.000   0.200   0.000   5.642
65.400  20.000  0.000   0.000   0.000   0.200   0.000   5.587
65.500  20.000  0.000   0.000   0.000   0.200   0.000   5.477
65.600  20.000  0.000   0.000   0.000   0.200   0.000   5.314
65.700  20.000  0.000   0.000   0.000   0.200   0.000   5.101
65.800  20.000  0.000   0.000   0.000   0.200   0.000   4.841
65.900  20.000  0.000   0.000   0.000   0.200   0.000   4.539
66.000  20.000  0.000   0.000   0.000   0.200   0.000   4.198
66.100  20.000  0.000   0.000   0.000   0.200   0.000   3.825
66.200  20.000  0.000   0.000   0.000   0.200   0.000   3.425
66.300  20.000  0.000   0.000   0.000   0.200   0.000   3.003
66.400  20.000  0.000   0.000   0.000   0.200   0.000   2.568
66.500  20.000  0.000   0.000   0.000   0.200   0.000   2.124
66.600  20.000  0.000   0.000   0.000   0.200   0.000   1.678
66.700  20.000  0.000   0.000   0.000   0.200   0.000   1.237
66.800  20.000  0.000   0.000   0.000   0.200   0.000   0.807
66.900  20.000  0.000   0.000   0.000   0.200   0.000   0.393
67.000  20.000  0.000   0.000   0.000   0.200   0.000   0.000
67.100  20.000  0.000   0.000   0.000   0.200   0.000   -0.366
67.200  20.000  0.000   0.000   0.000   0.200   0.000   -0.703
67.300  20.000  0.000   0.000   0.000   0.200   0.000   -1.005
67.400  20.000  0.000   0.000   0.000   0.200   0.000   -1.271
67.500  20.000  0.000   0.000   0.000   0.200   0.000   -1.498
67.600  20.000  0.000   0.000   0.000   0.200   0.000   -1.686
67.700  20.000  0.000   0.000   0.000   0.200   0.000   -1.834
67.800  20.000  0.000   0.000   0.000   0.200   0.000   -1.942
67.900  20.000  0.000   0.000   0.000   0.200   0.000   -2.011
68.000  20.000  0.000   0.000   0.000   0.200   0.000   -2.043
68.100  20.000  0.000   0.000   0.000   0.200   0.000   -2.041
68.200  20.000  0.000   0.000   0.000   0.200   0.000   -2.007
68.300  20.000  0.000   0.000   0.000   0.200   0.000   -1.944
68.400  20.000  0.000   0.000   0.000   0.200   0.000   -1.856
68.500  20.000  0.000   0.000   0.000   0.200   0.000   -1.748
68.600  20.000  0.000   0.000   0.000   0.200   0.000   -1.622
68.700  20.000  0.000   0.000   0.000   0.200   0.000   -1.485
68.800  20.000  0.000   0.000   0.000   0.200   0.000   -1.338
68.900  20.000  0.000   0.000   0.000   0.200   0.000   -1.188
69.000  20.000  0.000   0.000   0.000   0.200   0.000   -1.037
69.100  20.000  0.000   0.000   0.000   0.200   0.000   -0.889
69.200  20.000  0.000   0.000   0.000   0.200   0.000   -0.747
69.300  20.000  0.000   0.000   0.000   0.200   0.000   -0.614
69.400  20.000  0.000   0.000   0.000   0.200   0.000   -0.493
69.500  20.000  0.000   0.000   0.000   0.200   0.000   -0.384
69.600  20.000  0.000   0.000   0.000   0.200   0.000   -0.289
69.700  20.000  0.000   0.000   0.000   0.200   0.000   -0.209
69.800  20.000  0.000   0.000   0.000   0.200   0.000   -0.144
69.900  20.000  0.000   0.000   0.000   0.200   0.000   -0.092
70.000  20.000  0.000   0.000   0.000   0.200   0.000   -0.054
70.100  20.000  0.000   0.000   0.000   0.200   0.000   -0.028
70.200  20.000  0.000   0.000   0.000   0.200   0.000   -0.012
70.300  20.000  0.000   0.000   0.000   0.200   0.000   -0.004
70.400  20.000  0.000   0.000   0.000   0.200   0.000   -0.000
70.500  20.000  0.000   0.000   0.000   0.200   0.000   0.000
1(1,2,3)

B.J. Jonkman and L. Kilcher. TurbSim User’s Guide Verson 1.06.00. NREL, 2012. An optional note.

2

J. Mann. Wind field simulation. Probabilistic Engineering Mechanics, 13:269–282, 1998.

3(1,2)

Paul S. Veers. Three dimensional wind simulation. 1988.

4(1,2,3)

G.K. Batchelor. The Theory of Homogeneous Turbulence. Cambridge University Press, 1953. ISBN 0521041171.

5(1,2)

IEC61400-1 Standard. IEC 61400-1:2019 Wind energy generation systems - Part 1: Design requirements. Standard, International Electrotechnical Commission, Geneva, Switzerland, 2019.

6

NREL. IECWind. https://www.nrel.gov/wind/nwtc/iecwind.html, 2022. [Online; accessed 2022-06-13].